
Int. J Heat Moss Transfur. Vol. 17. pp. 955-956. Pergamon Press 1974. Printed in Great Britain 

SHORTER COMMUNICATIONS 

A CLOSED-FORM SOLUTION TO RADIANT INTERCHANGE 
BETWEEN NONISOTHERMAL PLATES 

A. L. CROSBIE and D. C. LOOK 

Thermal Radiative Transfer Group, Department of Mechanical and Aerospace Engineering, 
University of Missouri-Rolla, Rolla, MO. 65401, U.S.A. 

(Received 19 July 1973 and in revised form 16 November 1973) 

INTRODUCTION 

RADIANT interchange between diffuse surfaces is described 
by Fredholm integral equations. Usually [l-3] these integral 
equations are solved by numerical methods or approximate 
analytical techniques. Closed form solutions [l] have been 
obtained only for the spherical cavity and the circular-arc 
cavity. The primary objective of this note is to present a 
closed-form solution for the parallel plate geometry. The 
secondary objective is to study the effect of temperature 
fluctuations on radiant interchange. 

PROBLEM AND SOLUTION 

In an attempt to investigate the effect of temperature 
fluctuations on the radiative interchange between surfaces, 
consider two infinite plates separated by a distance h [see 
Fig. l(a)]. Theassumed nonisothermal temperature distribu- 
tion on the plates is illustrated on Fig. l(b) and is defined 
by equation (1) 

T(y) = T, + To cos By (1) 

where T, is some reference temperature, Ta is proportional 
to the maximum temperature variation, T, > To and p is a 
parameter. While temperature distribution (1) is relatively 
simple, it is representative of a fluctuating temperature dis- 
tribution. Notice the plates are opaque, diffuse, and have 
identical properties. 
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FIG. 1. (a) Schematic of geometry of 
consideration. (b) Nonisothermal tem- 

perature profile. 

The general expression for the radiosity is presented m 
the book by Love [2] and for the infinite plate geometry 
it becomes 

R(y) = EC+(~) f p s cc R(j)h2 dj 

2 __ [(y-J)*+hz]J’Z’ 
(2) 

when the symmetry of the problem is taken into account. 
In this form five parameters (p, /?. h, TO. T,) must be specified 
before the radiosity equation can be solved. Using standard 
trigonometric identities, T4(y) may be cast in the following 
form: 

P(y)= T,4+3T,ZToZ+QTo4+(4T,3To+3T,T~)cosBy 

+(3a*T: +~T:)COS2~y+ T,Tojcos3/?y 

+ QTo4 cos 4jy. (3) 

Since each nonhomogeneous term is in the cosine form and 
equation (2) is linear, the radiosity can be expressed as 

R(y) = E~(T:‘+~T,‘T~~+~T~)B(~,O) 

+&u(4~3TO+3T,To3)E(y,8)+Ea(3T,ZTgZ +fTR) 

x WY, 28) + EUKTo3B(Y, 38) +; QB(Y. 48) (4) 

where the non-dimensional radiosity B(y,/?) satisfies the 
following integral equation: 

B(y, 8) = cos 84’ + c s m B(j;>!W2 
2 _a [(y-j)2+h2]3’* 

dj. (5) 

Note the function B(y, /?) depends on only three parameters 
(p, /3, h). The solution to equation (5) may be determined 
directly by assuming the following form for B(y,B): 

B(y, p) = A cos By. (6) 

After substitution of equation (6) into equation (5) along 
with the variable change of y* = F-y. and execution of the 
simple integration [4] the solution is 

WY, 8) = 
cos BY 

1 -tMKtW 
(7) 

where K, is the modified Bessel function of the second kind 
of order one. 
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The expression for the local nondimensional heat transfer 
(radiative flux) is presented by Love [2] and is given 

cl(Y,B) = ~[cosBY-EB(Y,il)l= ‘“““YI_-phpKo. 
l- ~BKl~W) (8) 

1 

Now the heat transfer for the aforementioned problem can 
be expressed in terms of q(y, j), i.e. 

q(y) = E~1(4T,3~o+3T,To3)4(y,B)+(3T,2T02+fT~)q(Yr2P) 

+ (VO%(Y~ 38) + (To4/8)4(~,48)}. (9) 

The overall nondimensional heat transfer is determined by 

(10) 

Ny,B)= B I>+;, b’ > ( > 
only the average over one cycle need be determined. The 
computation indicated by equation (10) results in an answer 
of zero. Thus the overall heat transfer for the aforementioned 
problem is 

Q= {( EU 4T,3To+3T,To3)Q(B)+(3T,*T~+fT04)Q(28) 

+(z~o3)0(3B)+ s Q(4B) = 0. (11) 
("I- I 

RESULTS AND CONCLUSIONS 

The behavior of the nondimensional radiosity, sB(y,jI), 
at y = 0 is presented in Fig. 2. The radiosity varies from 
unity for the isothermal case (B = 0) to E for large h/3. A 
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FIG. 2. Nondimensional radiosity. 

surface with a nondimensional radiosity of unity appears 
black, while a nondimensional radiosity of c implies a gray 
surface with zero irradiation. Thus, for h/I > 5 the surface 
at y = 0 receives no energy from the other surface. Physically 
viewing the rapid spatial fluctuations (/r/j > 5) on the other 
surface from Jj = 0, one sees only an average of these 
fluctuations which is zero. For p < 0.1. the radiosity depends 
weakly on hb and approximates that of a black surface. 
Near p = 1 the nondimensional radiosity is strongly depcn- 
dent on E. 
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FIG. 3. Nondimensional local heat transfer. 

The nondimensional local heat transfer, @(y, p), at y = 0 
is illustrated in Fig. 3. The local heat transfer varies from 
zero at p = 0 to E for large hp. As with the radiosity, the 
local heat transfer is independent of hp for h/I > 5. For 
h/l << 1, the local heat transfer is independent of p. 

From an experimental point of view the interesting result 
of this investigation is the fact that for nonisothermal 
surfaces, the overall heat transfer may be zero, while the 
local heat transfer may execute large variations with position. 
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